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The local environment where we live within the Earth's biosphere is often taken for 
granted. This environment can vary depending on whether the land cover is a forest, 
grassland, wetland, water body, bare soil, pastureland, agricultural field, village, 
residential suburb, or an urban complex with concrete, asphalt, and large buildings. In 
general, the type and characteristics of land cover influence surface temperatures, 
sunlight exposure and duration, relative humidity, wind speed and direction, soil moisture 
amount, plant life, birds, and other wildlife in our backyards. The physical and biological 
properties (biophysical characteristics) of land cover help to determine our surface 
environment because they directly affect surface radiation, heat, ahd soil moisture 
processes, and also feedback to regional weather and climate. Depending on the spatial 
scale and land use intensity, land cover changes can have profound impacts on our local 
and regional environment. 

Over the past 350 years, the eastern half of the United States, an area extending from 
the grassland prairies of the Great Plains to the Gulf and Atlantic coasts, has experienced 
extensive land cover and land use changes that began with land clearing in the 1600s, led 
to extensive deforestation and intensive land use practices by 1920, and then evolved to 
the present-day landscape. Determining the consequences of such land cover changes on 
regional and global climate is a major research issue. Such research requires detailed 
historical land cover data and modeling experiments simulating historical climates. Given 
the need to understand the effects of historical land cover changes in the eastern United 
States, some questions include: 
- What were the most important land cover transformations and how did they alter 
biophysical characteristics of the land cover at key points in time since the mid-1600s? 
- How have land cover and land use changes over the past 350 years affected the land 
surface environment including surface weather, hydrologic, and climatic variability? 
- How do the potential effects of regional human-induced land cover change on the 
environment compare to similar changes that are caused by the natural variations of the 
Earth's climate system? 

To help answer these questions, we reconstructed a fractional land cover and 
biophysical parameter dataset for the eastern United States at 1650, 1850, 1920, and 1992 
time-slices. Each land cover fraction is associated with a biophysical parameter class, a 
suite of parameters defining the biophysical characteristics of that kind of land cover. 
This new dataset is designed for use in computer models of land-atmosphere interactions, 
to understand and quantify the effects of historical land cover changes on the water, 
energy, and carbon cycles. 

Our approach combined potential vegetation, county-level census data on farmland 
area and population size, soils data, historical resource statistics, a Landsat-derived land 
cover classification, and published historical information on land cover patterns and land 
use activities. We characterized the land cover condition and then reconstructed land-use 
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intensity maps for each time-slice. A mutually consistent set of biophysical parameter 
classes was developed to encompass the diversity of historical land cover characteristics 
in the eastern United States. These results were then used to derive time-series maps of 
land surface albedo (broadband reflectivity for incident sunlight), leaf area index, a 
deciduousness index, canopy height, surface roughness, and potential saturated soils for 
the 1650, 1850, 1920, and 1992 time-slices. 

Our analysis of reconstructed land cover and biophysical parameters spanned the 
period from the widespread forests and other natural vegetation patterns of the 1600s to 
the agriculture, regrowing forest, other semi-natural vegetation, degraded lands, roads, 
towns, and cities of the 20th century. (1650 was chosen to represent a recent minimum in 
human land-use intensity across the eastern United States, associated with the tragic 
declines in populations of Native Americans caused by introduced epidemic diseases.) As 
a result of repeated land use changes, the biophysical characteristics of the present-day 
land cover are markedly different from those of either the 1920s or the 1600s time- 
frames. For example, the effects of these land cover changes are evident in the large 
quantitative differences in the respective time-series maps of surface albedo, canopy 
height, and surface roughness parameters at the 1650, 1850, 1920, and 1992 time-slices. 
Similarly, the maps of potentially water-saturated soils for these time-slices show 
changes in early season soil moisture that resulted from the expansion of agricultural land 
area by artificial drainage. Land use changes have all but eliminated entire ecosystems, 
altered the regrowing forest, changed grassland physiology, increased the impervious 
surface area, and fragmented the landscape. 

This innovative land cover and biophysical parameter dataset for the eastern United 
States provides the foundation for a new generation of modeling studies of land- 
atmosphere interactions that will further quantify the consequences of historical land use 
change, for example, beginning with sensitivity tests on the interrelationships among 
biophysical parameters and potentially water-saturated soils. 
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Abstract 

Over the past 350 years, the eastern half of the United States experienced extensive land cover 

changes. These began with land clearing in the 1600s, escalated to wide-spread deforestation, 

wetland drainage, and intensive land use by 1920, and then evolved to the present-day 

landscape of forest regrowth, intensive agriculture, urban expansion, and landscape 

fragmentation. Such changes alter biophysical properties that are key determinants of land- 

atmosphere interactions (water, energy, and carbon exchanges). To understand the potential 

implications of these land use transformations, we developed and analyzed 20-km land cover 

and biophysical parameter datasets for the eastern United States at 1650, 1850, 1920, and 1992 

time-slices. Our approach combined potential vegetation, county-level census data, soils data, 

resource statistics, a Landsat-derived land cover classification, and published historical 

information on land cover and land use. We reconstructed land use intensity maps for each 

time-slice and characterized the land cover condition. We combined these land use data with a 

mutually-consistent set of biophysical parameter classes, to characterize the historical diversity 

and distribution of land surface properties. Time-series maps of land surface albedo, leaf area 

index, a deciduousness index, canopy height, surface roughness, and potential saturated soils in 

1650, 1850, 1920, and 1992 illustrate the profound effects of land use change on biophysical 

properties of the land surface. Although much of the eastern forest has returned, the average 

biophysical parameters for recent landscapes remain markedly different from those of earlier 

periods. Understanding the consequences of these historical changes will require land- 

atmosphere interactions modeling experiments. 



1. Introduction 

The eastern United States, here defined as the land area to the east of the 97th west meridian, 

has experienced a series of extensive land cover and land use changes since the arrival of 

European explorers in the early 1500s [Williams, 1989; Whitney, 19941. Regional trajectories 

of major land cover changes since the 1600s (deforestation, wetlands conversion, agricultural 

expansion and contraction, and reforestation), when linked with associated changes in 

biophysical properties, provide a basis for quantifying geophysical consequences of these 

changes. 

The first major land cover transformation was the clearing of the eastern forest, which once 

extended across most of the eastern United States from the grasslands of the central plains to 

the marshes and open woodlands of the Atlantic and Gulf coasts. Forest harvest for wood 

products and clearing for agriculture in the New England and the Atlantic coastal areas was 

followed by westward expansion across the Appalachians into the Ohio and upper Mississippi 

River basins, where agriculture was well established by the mid-1 800s. By the 1840s, 

agriculture had peaked in the Northeast and many abandoned farm fields and pasturelands 

were in the process of forest regeneration [Williams, 1989; Foster and 0 'Keefe, 20001. The 

late 1800s and early 1900s saw intensive commercial logging of old-growth forests in the 

Great Lakes states, followed by mechanized logging of the southern pine forests. Agricultural 

production was increased by the introduction of artificial land drainage systems, such as 

underground tiles to remove excess water in upper soil layers of Midwestern states (e.g., 

Indiana and Illinois) [ Whitney, 19941. Meanwhile, economically marginal farms were being 



abandoned in the Southeast. The early 20th century marked the completion of an immense land 

cover transformation across most of the eastern United States [Whitney, 19941. 

Reforestation of cleared lands and relocation of intensive agriculture, such as with the drainage 

of wet prairies in the corn-belt states and floodplains of the lower Mississippi River valley, 

represented some of the subsequent land cover transformations within the eastern United 

States. With fluctuations in crop prices, changes in labor markets, and competition with farm 

products from other regions, farm abandonment continued throughout the East [Hart, 1968; 

Williams, 19891. Efforts to promote forest regrowth received support from an environmental 

conservation movement that began in the 1880s-motivated by concerns about the negative 

consequences of land use change, specifically land and water resource degradation associated 

with deforestation and poor farming practices. A rapidly dwindling supply of saw timber in the 

eastern United States led to forest management policies that promoted planting of trees and 

suppression of fires [Williams, 19891. The resiliency of eastern timberlands was 

underestimated in the 1920s, and by the late 20th century forests had regenerated on much 

cutover and abandoned land [Shands and Healy, 1977; Clawson, 1979; Williams, 1989; 

MacCleery, 19921. In most cases, the characteristics of the forest have changed. Previous land 

clearing, timber management practices, and the inadvertent effects of human activities, such as 

introduction of the chestnut blight, have left their imprints on the forest. In addition, 

widespread agricultural and silvicultural drainage throughout much of the eastern United States 

has altered seasonal soil moisture patterns, in particular the distribution of soils that are 

saturated in the early growing season. By the mid-20th century, land cover was being 

transformed by growing urbanization and other land use changes leading to increasing 



landscape fragmentation. As we show, the biophysical properties of land cover in the late 20th 

century remained distinct from the land cover that existed at the onset of widespread land 

cover conversion or during the early 20th century. 

Research on land cover and land use change at regional-to-global scales has received 

increasing emphasis since the early 1990s [National Research Council, 1990; Committee on 

Earth Science, 1990; International Geosphere-Biosphere Program, 1993; National Research 

Council, 200 1 ; U.S. Climate Change Science Program, 2003; National Research Council, 

2005; and Foley et al., 20051. Land cover change has been associated with changes in air 

quality, water quality, hazards potential (such as flooding, landslide, frost occurrence, and 

drought exacerbation), biological diversity, ecosystem processes, regional weather and climate 

variability, and other aspects of the biosphere [Goodchild et al., 1993; Meyer and Turner, 

1994; Steyaert and Pielke, 2002; and Gutman et al., 20041. Changes in land cover and land use 

can alter land surface biophysical properties that exert controls over land processes involving 

the land surface energy, radiation, and soil moisture budgets [Dickinson, 1983; Pielke, 1984, 

Dickinson et al., 1986; and Sellers et al., 19861. Therefore, changes in land cover and land use 

can affect the surface water, energy, and carbon cycles; land surface interactions with the 

atmospheric boundary layer; convective activity, and precipitation [Pielke, 20011. In addition 

to the direct effects on the land surface energy budget and land surface forcing [Pielke, 2001; 

National Research Council, 20051, land cover change that alters soil moisture or water- 

saturated soil conditions may have implications for seasonal atmospheric predictions because 

of potential soil moisture and precipitation feedbacks [Findell and Eltahir, 1997; Fennessy and 

Shukla, 19991. 



Because of these complex interrelationships, coupled land-atmosphere interactions models are 

needed to quantify and understand the potential consequences of regional land cover and land 

use change on land surface biophysical processes, and on hydrologic, weather, and climate 

variability [National Research Council, 1990; Pielke and Avissar, 1990; Sellers et al., 1997; 

Bounoua et al., 2000; Chen et al., 200 1 ; Kalnay and Cai, 2003; and Bronstert et al., 20051. 

Reconstructed land cover and biophysical parameter data have also been used in modeling 

sensitivity tests to determine the consequences of long-term land cover change on regional 

weather and climate [Copeland et al., 1996; Bonan, 1997, 1999; Pielke et al., 1997; Eastman et 

al., 200 1 ; Narisma and Pitman, 2003; Roy et al., 2003; and Marshall et al., 20041. 

Reconstructed land cover characteristics data were integral to carbon budget studies for the 

conterminous United States, such as Houghton et al. [I9991 and Hurtt et al. [2002]. 

Our reconstruction of historical land cover for the eastern United States is rooted in mapping 

studies from the late 19th century to the mid-20th century that focused on understanding pre- 

colonial and contemporary vegetation. Early vegetation maps included generalized land cover, 

woodland density, and timber volume maps of the late 1800s [see Williams, 19891; a "graphic 

summary of American agriculture" including a map of forest, woodland, and cutover land 

[Baker, 19221; a map of "Natural Vegetation of the United States" [Schantz and Zon, 19241; 

and maps of the estimated area of "virgin saw timber forest" in 1620, 1850, and 1920 [Greeley, 

19251. The classic syntheses by Braun [I9501 and Kiichler [I9641 represented fundamental 

advances in the understanding of regional land cover history within the eastern United States. 

Braun [I9501 conducted a comprehensive study of the Deciduous Forest Formation of the 



eastern United States including the Southeastern Evergreen Forest and Hemlock-White Pine- 

Northern Hardwood regions. Kiichler [I9641 used a physiognomic approach (vegetation life 

forms and structural categories) to develop a potential natural vegetation (PNV) map for the 

United States. This was based on analysis of existing vegetation patterns, including remnant 

natural vegetation, and extensive review of published studies on both semi-natural and natural 

vegetation. The Kiichler potential natural vegetation was defined as, "the vegetation that would 

exist today if man were removed fiom the scene and if the resulting plant succession were 

telescoped into a single moment" [Kuchler, 19641. 

More recently, U.S. census data have been used to reconstruct historical patterns of agricultural 

land cover change within the conterminous United States [e.g., Maizel et al., 1998; Ramankutty 

and Foley, 1999a, 1999b; and Waisanen and Bliss, 20021. Maizel et al. [I9981 used U.S. 

Census of Population and Housing data (beginning 1790) and U.S. Agricultural Census data 

(beginning 1850) to map county-level population and percent of land in farms for the 

conterminous United States. Ramankutty and Foley [1999a, 1999131 used a satellite-derived 

potential vegetation dataset [also see Loveland et al., 20001 and a land-cover change model to 

disaggregate national and sub-national or U.S. state-level census data, and then reconstruct a 

regional to global cropland history (5 minute grid). Waisanen and Bliss [2002] used county- 

level census data to develop time-series maps that show the history of population (1 790- 1990) 

and agricultural development (1850-1997) for the conterminous United States. 

This paper reports the development of a reconstructed historical land cover and biophysical 

parameter dataset for land-atmosphere interactions modeling studies in the eastern United 



States. We reconstructed land use intensity maps including potential saturated soils for the 

eastern United States and characterized the land cover condition, spatial patterns, and changes 

in time relative to 1650, 1850, 1920, and 1992 time-slices. In parallel, we defined a coherent 

set of land cover and biophysical parameter classes to sufficiently resolve and characterize 

geospatial differences of land cover condition within and changes among the four time-slices. 

These results were combined to derive biophysical parameter maps and historical land cover 

data for each time-slice. The methods for geospatial analysis and dataset development are 

defined in Section 2. The land use intensity analysis, biophysical parameter mapping, and 

potential implications for land-atmosphere interactions are discussed in section 3. 

2. Methods 

2.1. Overview of the Analysis 

Our analysis for the 1650, 1850, 1920, and 1992 time-slices had three interrelated components: 

reconstructing land use intensity maps (section 2.3), developing land cover and biophysical 

parameter classes (Tables 1 and 2, section 2.4), and then combining the land use intensity maps 

and the set of land cover and biophysical parameter classes to derive biophysical parameter 

maps and historical land cover data for each time-slice (section 2.5). The set of land use 

intensity maps for each time-slice depicts major human land-use categories (e.g., regrowing 

forest, mixed agriculture, and residential-urban). Each map shows the fractional area 

contribution of the land use category relative to the entire set for the time-slice; the set of 

fractional areas sum to 1 .O. The 1850 and 1920 land use intensity maps were derived from a 



geospatial analysis of county-level census (population and farmland area) and Kuchler PNV 

data. The 1992 land use intensity maps were based on a Landsat-derived land cover dataset. To 

address the effects of artificial land drainage on soil moisture and provide a boundary condition 

for land-atmosphere interactions models, a geospatial analysis of soil suborders and improved 

farmland area was used to derive potential saturated soils maps for the early growing season in 

the 1650, 1850, and 1920 time-slices. The Kuchler PNV data were used to infer 1650 

vegetation types, interpret likely regenerating vegetation composition, and disaggregate 

county-level census data for the land use intensity analysis. The Kiichler PNV map units also 

provided the spatial framework to develop a temporally-consistent set of land cover classes 

(Table 1) and associated biophysical parameters (Table 2) that were developed in parallel with 

the land use intensity analysis for the four time-slices. The standard map projection used 

throughout this study was the Albers Equal Area Conic. 

2.2. Geospatial Data Sources 

2.2.1. U.S. Census Data 

Our source of county-level spatial data on farmland areas and population size for 1850 and 

1920 was the historical database developed by Waisanen and Bliss [2002] from U.S. Census 

records and other sources of information. The 1850 data included county-level areas for 

"improved land in farms" and "unimproved farmland", while the data for 1920 included areas 

for "improved land in farms", "unimproved farm woodlands", and "other unimproved 

farmland". 



2.2.2. Potential Natural Vegetation 

The PNV was represented with a l-km digitized version of Kuchler's 1964 map of potential 

natural vegetation of the conterminous United States (scale 1 :3.5 million), and interpreted 

using the Manual to Accompany the Map: Potential Natural Vegetation of the Conterminous 

United States [Kiichler, 19641. In addition to characterizing the composition and geography of 

each vegetation unit, the manual provides a concise summary of physiognomic information 

(e.g., vegetation life forms, canopy height class, canopy closure or vegetation density, and 

deciduousness). Quantitative definitions of structural categories used in these physiognomic 

summaries appear in related works setting out the vegetation mapping system [Kiichler, 1955, 

1966, 19671, thus providing information critical for inferring biophysical properties of 

potential vegetation (section 2.4). 

Given the appropriate caveats (Text S 1 in the supplementary materials1), Kuchler's PNV map 

and associated physiognomic characteristics for each vegetation unit provide a starting point 

for historical land cover reconstruction. Although significant land cover transformations have 

occurred over the past 400 years, the PNV map units represent a fi-ame of reference to 

understand and maintain temporal continuity and trajectories of land cover change from pre- 

colonial vegetation to contemporary semi-natural vegetation. PNV data tend to reflect the 

underlying constraint on vegetation form and development due to regional geomorphic, soils, 

and climatic conditions [e.g., Thompson et al., 20051. Kiichler [I9641 stated that he explicitly 

considered then available information on the effects of natural disturbance and vegetation 

likely to develop without on-going human influence. When combined with data on vegetation 

-- 

I Auxiliary material is available at ftp://ftp.agu.org/apend/jd/2006JDOO8277 



changes associated with the intensity of human land use, and updated with current knowledge 

of prevailing historical disturbance patterns in the eastern United States, these PNV data form a 

foundation for reconstructing the properties of natural and semi-natural land cover. The spatial 

resolution of county-level census data and the 1964 PNV map (1:3.5 million) also support 

some carefully drawn inferences about changes in land cover heterogeneity at scales coarser 

than 10 km. 

We assumed that Kiichler's 1964 data represent a reasonable proxy for pre-colonial vegetation 

physiognomy at 1650. Nevertheless, PNV should differ from vegetation conditions just prior to 

extensive European settlement in several respects (see Text S 1 I). The influence of land use 

practices of Native Americans was not included [Kiichler, 19641. Because the terrestrial 

geography used to map PNV was contemporary [Kiichler, 19641, the historical differences in 

coastlines and artificial inland water bodies were not represented. Although the PNV explicitly 

mapped various wetlands regions, some PNV units implicitly include small-scale wetlands 

inclusions or do not explicitly map extensive wetlands phases in predominantly dry PNV units 

(e.g., Bluestem prairie, Bluestem-sacahuista prairie, Palmetto prairie, Blackbelt, and Southern 

mixed forest). The PNV does not include many former wetlands areas (e.g., the tallgrass prairie 

ecosystem) that were artificially drained and converted to agriculture [ Whitney, 19941. Because 

most of the historical area of water-saturated soils would be missed if predominantly wetland 

PNV units were used as the sole source of information, we derived a potential saturated soils 

map for the 1650 time-slice to provide soil moisture information for land-atmosphere 

interactions modeling in the early growing season (section 2.3.4). 



2.2.3. National Land Cover Data (NLCD) 1992 

Our source of contemporary land cover data was the 30-m USGS NLCD that was derived from 

1992193 Landsat Thematic Mapper (TM) scenes as described by Vogelmann et al. [2001]. The 

21 NLCD classes were individually aggregated to obtain the fractional area of each class for 1 - 

ktn pixels, thereby yielding 2 1 separate fractional area maps. 

2.2.4. Other Spatial Data 

A 1-km digital elevation model (DEM) and associated slope data from the USGS HYDROlk 

dataset were used in the geospatial analysis. 

We used regional forest statistics [Smith et al., 20021, that were summarized by Forest Service 

region and Forest Cover Type Groups, and related maps to constrain reconstructed trajectories 

of recovering forest lands (section 2.4.2) and to help derive biophysical properties of semi- 

natural land cover (section 2.4.4). We also used a digital map of Forest Cover Type Groups 

[Zhu and Evans, 1994; US. National Atlas, 2000; Smith et al., 20021. 

The STATSGO Soils Data [USDA, 1994a, 1994bl were the basis for a general soil suborder 

map from the U.S. Department of Agriculture (USDA) National Resource Conservation 

Service (NRCS) as published in Chapter 22, Soil Taxonomy, Second Edition [USDA, 19991. 

The general soil suborder map data were provided by S. W. Waltman [personal 

communication]. We used these data in a geospatial analysis to derive a potential saturated 

soils data layer for each of the 1650, 1850, and 1920 time-slices (section 2.3.4). 



2.3. Reconstructing and Mapping Land Use Intensity 

2.3.1. Geospatial Analysis for 1850 

Four land use intensity maps for 1850 were derived from a geospatial analysis of county-level 

census, PNV, and other spatial datasets. These were: Old-Growth Vegetation, Forest-Village 

Disturbance, Highland Agriculture, and Lowland Agriculture (see Table 3, section 3.1). 

A geographic information system (GIs) overlay operation was used to derive a set of discrete 

county-PNV polygons. The county-level attributes attached to each county-PNV polygon were 

converted to 1-km grids that included the fractional areas of improved farmland, unimproved 

farmland, and non-farmland, as well as population density (persons per km2). A topographic 

mask derived from USGS HYDROlk DEM and slope data was used to split the improved 

farmland into highland and lowland agriculture components. Online supplemental material 

(Text S2) provides further details of the geospatial methods for 1850.' 

The fractional area grids for unimproved farmland and non-farmland were assumed to include 

a combination of disturbed and relatively undisturbed land cover components, depending on 

the degree of human activity as of 1850. The unimproved farmland was assumed to represent 

forests and woodlands, regenerating forests, or intact old-growth vegetation where human 

activity was minimal (e.g., unimproved portions of frontier land claims). Depending on the 

stage of settlement, the non-farmland fraction represented either a relatively undisturbed 

natural landscape or a disturbed mixture of land use types associated with settled lands. We 



274 assumed that the land cover of relatively undisturbed fractions of each grid approximated the 

vegetation reconstructed for 1650. 

To separate each grid cell into settled and relatively undisturbed components, we estimated the 

fraction of land use disturbance due to human activities with a piecewise-continuous linear 

function of the population density. In this simple model, a population density of zero was 

assumed to represent negligible human disturbance while a population density of 20 people per 

km2 was assumed to be sufficient for 100% human disturbance of the natural landscape. We 

applied this function separately to the unimproved farmland and non-farm grids, and then 

summed the results to form two land use intensity maps: a Forest-Village Disturbance map and 

a map representing the fractional area of the 1850 landscape that was relatively undisturbed by 

human activities. 

2.3.2. Geospatial Analysis for 1920 

Seven land use intensity maps were reconstructed for 1920: Remnant Old-Growth, Young 

Regrowing Forest, Non-Forest Vegetation, Degraded Land, Highland Agriculture, Lowland 

Agriculture, and Residential-Urban (see Table 3, section 3.1). The initial analysis for 1920 was 

directly analogous to the approach for 1850 except that the census included unimproved farm 

woodlands and other unimproved farmland components. Thus, 1 -km fkactional area grids for 

improved agriculture, farm woodlots, other unimproved farmland, non-farmland, and 

population density were derived from the county-level attributes and county-PNV discrete 

polygons. The fractional area of improved agriculture was split into lowland and highland 

296 components according to the topographic-slope conditional mask. 



Because of population expansion and the growth of urban areas from 1850 to 1920, we 

estimated the residential-urban land use intensity (e.g., villages, roads, cities, and urban areas) 

for each county. Fractional areas were approximated with a piecewise-continuous linear 

function, which was calibrated with an analysis of non-farm fractional area and population 

density. This partitioned the non-farm area into a residential-urban category representing high 

land use intensity and other land-use intensity categories making up the remainder of the non- 

farm area. (See Text S2 for additional details of our analysis of residential-urban land use 

intensity in 1920.') 

As the other extreme of low-intensity land use, we used the Greeley [I9251 "area of virgin 

forest 1920" map to estimate the fractional area of remaining virgin forest of saw timber 

quality in each county. The regional sums of virgin forest area from the Greeley map closely 

corresponded to the tabular data of virgin forest area for the "1920 USFS regions" [USDA, 

19251: 1) New England, 2) Middle Atlantic, 3) Great Lakes States, 4) Central, 5) South 

Atlantic and Gulf, and 6) Lower Mississippi Valley. Because the remaining virgin forest was 

mostly located in counties with a low population density and a large non-farm area, the virgin 

forest was treated as a component of the non-farm area in each county. (For additional 

information on our analysis of the remaining virgin forest in 1920, see Text ~ 2 . ' )  

Next, the residual non-farmland area (non-farmland less residential-urban and remnant virgin 

forest) was split into young forest regrowth, not restocking forest area, or non-forest vegetation 

depending on the PNV class within each county-PNV polygon. First, the census data were 



summed by PNV class to obtain totals for the USFS 1920 regions and then analyzed with the 

USFS regional forest data (USDA, 1925) to estimate the regional ratio of not restocking land to 

the young regrowing forest on the non-farmland. Second, the regional ratios were used to split 

the residual non-farmland into non-farmland young forest regrowth and not restocking areas 

within each county-PNV polygon. Online supplemental material (Text S2) describes the 

regional analysis necessary to produce estimates consistent with forest area statistics for USFS 

1920 regions. ' 

The results for each county-PNV polygon were converted to fractional area grids. A fractional 

area map for degraded land (i.e., sparse vegetation, scattered shrubs, "scrub" trees, and barren 

land with poor forest regeneration) was calculated from the sum of the not restocking land and 

other unimproved farmland categories. Note that by 1920 degraded land was sufficiently 

extensive to warrant a separate land use intensity category (see Table 3). The fractional area 

grids for the young forest in farm woodlands and non-farmland were summed to form our 

land-use intensity category representing young regrowing forest. 

2.3.3. Geospatial Analysis for 1992 

A geospatial analysis of the 1992 NLCD was used to define a set of 1992 land-use intensity 

categories (see Table 3, section 3.1) and to infer forest structural information based on a 

statistical comparison among the USGS NLCD, U.S. Forest Cover Type Groups [US. National 

Atlas, 20001, Forest Resources of the United States, 1997 [Smith et al., 20021, and PNV 

datasets [Kiichler, 19641. 



The NLCD was aggregated to 12 land-use intensity categories expressed as 1 -km fractional 

areas, which summed to 1 .O, and consisted of 7 semi-natural vegetation categories and 5 land 

use categories. The semi-natural categories included the three NLCD forest classes plus the 

NLCD woody wetlands, emergent herbaceous wetlands, shrublands, and grasslands classes. 

The higher land-use intensity categories included inland water bodies, the NLCD transitional 

class, mixed agriculture (NLCD classes for pasturehay, row crops, small grains, fallow, 

urbanlrecreational grasses, and non-natural woody vegetation such as orchards and vineyards), 

low intensity residential, and urbadbuilt-up/impervious (NLCD classes for high intensity 

residential, commercial/industrial/transportation, bare rock/sand/clay, and quarrieslstrip 

minesfgravel pits). 

Spatial distributions of the seven semi-natural land cover classes then were compared with 

USFS forest cover data and PNV data. We selected the 1-km pixels where a NLCD semi- 

natural class was at least 50% of the area, and then cross-tabulated their dominant NLCD 

classification with their PNV unit and their mapped Forest Cover Type Group. This statistical 

analysis informed our selection of the most appropriate biophysical land cover classes to use 

for NLCD classes occurring in various PNV units (see section 2.4). 

2.3.4. Geospatial Analysis of Potential Saturated Soils 

A geospatial analysis of the NRCS STATSGO soils dataset was used to derive fractional area 

maps of potential saturated soils during the early growing season for the 1650, 1850, and 1920 

time-slices. In contrast to the much more complex problem of wetlands characterization and 

mapping [National Research Council, 19951, we adopted a conservative approach in order to 



infer the distribution of potentially water-saturated soils (not addressed by Kiichler PNV data); 

to account for changes caused by artificial drainage for agriculture in the1 850 and 1920 time- 

slices; and maintain temporal continuity with potential saturated soils inferred from the 1992 

NLCD wetlands classes. We also restricted this analysis to the early peak growing season, 

when preceded by normal weather. Because land-atmosphere interactions processes are 

sensitive to soil moisture levels, incorporating the fractional area of saturated soils into 

modeling experiments would represent a first-order approximation to account for effects on 

soil moisture and energy budgets. 

We used data fiom STATSGO on the fractional abundance of different soil suborders to derive 

an estimated saturated soils moisture map for 1650 and then used census farmland data to 

adjust the 1650 baseline map to estimate saturated soils maps for the 1850 and 1920 time- 

slices. Our methods for 1650 were consistent with Dahl [I9901 who used aquic and organic 

soil suborders [USDA, 19751 as one of his approaches to estimate the original wetlands area 

within the conterminous United States at the 1700s time-frame. This approach was in part 

based on the concept that h y h c  soils, such as the aquic suborders, can retain distinctive soil 

profile characteristics even after drainage [Dahl, 1990; NRC, 19951. For our analysis, we 

combined organic (Histosols, excluding Folists) and aquic suborders [USDA, 19991 to estimate 

the fractional area of potential saturated soils during the early growing season for the 1650 

time-slice. Conversion of wetlands to agriculture by artificial drainage was the dominant 

reason for wetlands losses and directly contributed to the expansion of farmland crop area well 

into the 20th century [Dahl, 1990; Whitney, 19941. To estimate the fractional area of potential 

saturated soils for the 1850 and 1920 time-slices, we used improved farmland data fiom the 



agricultural census of 1850 and 1920, respectively. If the fractional area of improved farmland 

exceeded the fractional area classified as other soil suborders (non-aquic, non-organic), then 

the difference was used to decrease the area of potential saturated soils. 

2.4. Biophysical Land Cover Classes and Parameters 

2.4.1. Establishing a Consistent Set of Land Cover Classes 

This study required a suite of land cover classes and associated biophysical parameters to 

characterize the range of land cover conditions needed to represent 1650, 1850, 1920, and 1992 

time-slices across the eastern United States (see Table 1). Our analysis built on heritage land 

cover classes for modeling land-atmosphere interactions and their biophysical parameter tables 

[e.g., Dickinson et al., 1986; and Sellers et al., 19861, and the parameters for the Land 

Ecosystem-Atmosphere Feedback Model (LEAF-2) model [Lee, 1992; Walko et al., 20001. We 

extended those class sets to represent the greater range in some biophysical properties needed 

for historical land cover, and we updated parameter estimates using published reviews of field 

observations and recent observations with Earth remote-sensing satellites. 

A set of land cover classes and their associated biophysical parameters can be viewed as a 

biophysical parameter class table, where the rows are functionally distinct types of land cover 

and columns specify parameters directly related to land surface processes (e.g., see Table 2). 

Parameters important for land-atmosphere interactions include: estimates of the characteristic 

solar broadband albedo, emissivity, leaf area index (LAI), fractional vegetation cover (VF), 



aerodynamic surface roughness length (zo), zero-plane displacement height (D), rooting depth 

(d,.), canopy height (h), and the amounts of seasonal change in LA1 (ALAI ) and in VF (AVF). 

Although parameters for some intensive land use classes, such as croplmixed farming, were 

adapted from the LEAF-2 biophysical parameters, sites representative of much historical land 

cover are uncommon or nearly absent from the modern landscape. Given the limitations of 

available parameter sets, we began with physiognomic information for Kiichler's PNV units. 

We developed a consistent suite of land cover classes to represent the full range of biophysical 

properties important to modeling 1650 land cover, grouping PNV units with the same or 

similar average physiognomy. We then analyzed properties of semi-natural vegetation 

common in other time slices. Classes were added when no class defined for an earlier time- 

slice could parsimoniously represent a land cover condition that had become widespread (see 

section 3.1). Classes were combined when the differences in their estimated biophysical 

parameters were smaller than uncertainties in the parameter estimates. 

The approach was conservative in that we sought to represent land cover change, where 

possible, without defining distinct classes for different historical periods. It was also iterative, 

in that it required us to estimate biophysical parameters for many different types of vegetated 

historical and recent land cover, to combine types of vegetation having similar biophysical 

properties, and then to confirm or refine our estimates of characteristic parameters for the 

classes in light of the historical record (see section 3.1). Repeating this process, as we extended 

our analysis across the four time slices, produced a consistent suite of classes appropriate for 



modeling the effects of wide-spread historical changes in properties of land surfaces of the 

eastern United States. 

2.4.2. Plant Life Forms 

For vegetated land cover, definitions of dominant life forms or plant functional types provide 

key assumptions needed to derive biophysical parameters (e.g., differences in leaf lifespan, leaf 

reflectance, or typical crown shapes of trees). Characteristic plant life forms also were used in 

an informal way to help develop descriptive class names (Table 1) and convenient short-hand 

names (Table 2) for parameter classes. Information on prevailing mixtures of vegetation life 

forms was from PNV physiognomy [Kiichler, 19641 or from regionally-derived changes 

associated with human land use (see section 3.1). We developed information on the 

characteristics and composition of managed forests using summary tables published in Forest 

Resources of the United States, 1997 [Smith et al., 20021. Additional insights into regional 

differences in patterns of life form dominance during forest regeneration, regrowth, and 

continued harvesting were provided by statistical cross-tabulations in which forest cover type 

data [Zhu and Evans, 1994; and US. National Atlas, 20001 were compared to the 1992 NLCD 

and Kiichler 1964 PNV datasets, as well as by results from the cross-tabulation of 1992 NLCD 

and PNV data. We relied on two further assumptions about the predictability of ecosystem 

responses to disturbance: (1) Forest composition, as mapped with forest type groups and 

measured in forest inventories from 1953 to 1997, developed through predictable successional 

processes consistent with 1920 land cover. (2) Trajectories of plant succession remain 

sufficiently stable within a PNV unit to use 20th century composition and dynamics in 

estimating the average characteristics of disturbed semi-natural forests in 1850. 



2.4.3. Land Cover Classes to Characterize Historical Land Cover 

A suite of 36 land cover classes was sufficient to summarize the types of biophysically distinct 

land surfaces that were important components of historical and modern land cover in the 

eastern United States (Table 1). Most (22) are represented in the PNV of the eastern United 

States and were present in the land cover of 1650. Some classes with sparse vegetation andlor 

low stature (e.g., #3 1 Open Infertile Grassland; #45 Low Mixed Open Forest) were restricted 

to unusual soils in 1650, but also represent biophysical properties that became much more 

common as intensive human land use became more widespread (see section 3.1). Classes 

representing land cover of agricultural, residential, and urban settings were not used for the 

1650 time-slice, as they represented negligible land area at that time. As discussed below 

(section 3. l), these are associated with types of intensive land use that later came to dominate 

the land cover of the eastern United States. A set of taller forest classes essential for 

characterizing the land cover of 1650 became progressively less important in later time periods 

(Table 1). 

2.4.4. Canopy Height (h) 

For purposes of vegetation mapping, Kiichler [1955, 19661 established the following forest 

height classes, defined by the average height of the uppermost canopy surface: low (2- 10 m), 

medium tall (10-25 m), tall (25-35 m), and very tall (greater than 35 m). For physiognomic 

data provided as ranges, it is simplest to assume a uniform distribution of likely values and to 

use the mid-range as the characteristic value. Any other assumption is more complicated, 

requiring additional information or prior knowledge. Kiichler [1955, 19661 also provided 



numerical ranges for height categories of herbaceous vegetation and rules for categorizing 

shrubs and very low trees, as well as numerical ranges for coverage terms such as "continuous" 

and "rare". When physiognomic summaries [Kiichler, 19641 listed multiple forest or grassland 

height classes for a vegetation unit, we developed aggregated characteristic values using the 

coverage information provided. When the physiognomic summary described multiple distinct 

layers, for example, "tall grass with scattered groves of low trees", we used structural 

information about those layers, including distinct height strata and relative cover estimates, in 

modeling other biophysical properties of the vegetation unit [R. Knox and L. Steyaert, 

manuscript in preparation, 20071. 

Average canopy heights for modern forest cover type groups in various Forest Service regions 

were derived from published forest inventory statistics [Smith et al., 20021, and appropriate 

allometric equations for tree height, to develop area-weighted averages. We then used that 

information to estimate characteristic heights of distinct types of forest regeneration and stages 

of forest regrowth important for the 1850, 1920, and 1992 time-slices (see section 3.1). 

2.4.5. Shortwave Broadband Solar Albedo 

The total shortwave broadband solar albedo (peak growing season) for most of the land cover 

classes was updated based on an analysis of the MODIS-derived albedo data summarized by 

Gao et al. [2005] and Jin et al. [2003]. The white-sky albedo data summaries of Gao et al. 

[2005; Table 1 and Figure 51 were interpolated to refine the total shortwave broadband albedo 

values for related groups of land cover classes (Table 2). In some cases (e.g., wetlands), 

published albedo data from field studies were used. In addition, time-series of observed 



shortwave broadband albedo (local solar noon) that were measured at selected Surface 

Radiation Budget Network (SURFRAD) stations plus associated MODIS-derived actual 

broadband albedos (combined black-sky and white-sky estimates based on the direct and 

diffuse components fiom SURFRAD data) as summarized by Jin et al. [2003] were used for 

comparison. We also analyzed multi-year time-series of MODIS-derived albedos (black-sky, 

white-sky, and combined blue-sky) that were available for subsets within the EOS Validation 

Core Sites located in our study area. In general, the MODIS-derived broadband surface albedo 

estimates were towards the low-end of the range of reported field measurements, for example, 

see tabulated albedo data and field data sources as summarized by Pielke [1984]. The 

UrbadBuilt-up/Impervious Surface (class #25) was assigned an albedo of 0.15 [Offerle et al., 

2003, Jin et al., 20051. Classes with bare soil exposed beneath plant cover that is sparse, close- 

cropped, or discontinuous were assigned higher average albedo values (0.2,0.22). The albedo 

for Residentialmrban Trees and Grass (class #26) was retained from the corresponding LEAF- 

2 class. 

2.4.6,. Emissivity 

Longwave (thermal) emissivity estimates varied modestly among different living plant 

materials: 0.95 for broadleaf canopies, 0.97 for needleleaf canopies, and intermediate values 

for grasses and mixed forests (Table 2). Larger differences are attributable to non-living 

surfaces such as water (0.99) and bare ground (0.86). Emissivity parameters for classes with 

mixed surface types derive from the aggregate effects of those surfaces. A higher fraction of 

bare soil or impervious surface lowered the emissivity estimate, whereas water exposed at or 

above the soil surface raised the emissivity parameter. 



2.4.7. Leaf Area Index (LAI) 

The estimated total column leaf area index (LAI), i.e. the average ratio of living leaf area (one- 

sided convention) to corresponding ground area, for the land cover classes was based on the 

biomelland cover type summaries of LA1 provided by Scurlock et al. [200 11. We rounded their 

averages to the nearest 0.5 and used those for total LA1 of semi-natural vegetation, except in 

cases where unusually low values of LA1 are associated with early forest regeneration, 

mangrove, and some vegetation types confined to poor/shallow soils as discussed by Barbour 

and Billings [1988]. For classes characterized by open canopies resulting from a history of 

intensive human land use, we reduced the peak LA1 to reflect a greater amount of exposed soil 

(Table 2). LA1 values for some classes characterized by intensive human land use were 

retained from heritage class sets. 

2.4.8. Differences in LA1 from Dormant to Peak Season (ALAI ) 

We estimated the dynamic component of the peak season LA1 from the fraction of the cover in 

deciduous life forms (12.5%, 50%, and 87.5% for nominally evergreen, mixed, and deciduous 

forest and shrub types). We multiplied these fractions by the peak LA1 and then rounded back 

to units of 0.5 LAI. For the dormant season LA1 of forest understory plants, grasslands, and 

dependent or epiphytic plants, we adjusted for the fact that these plants tend to be more 

evergreen where winters are less severe. If a parameter class represented vegetation of warm 

temperate or subtropical portions of the eastern United States, we reduced the seasonal 

dynamics of the portion of the leaf area associated with those plant types or layers. 



2.4.9. Fractional Vegetation Cover (VF) 

Estimates of the fractional area covered by vegetation were based on the satellite-derived 

analysis of Zeng et al. [2000]. We used these data conservatively, adjusting up or down from 

the corresponding IGBP class value when the physiognomic description (e.g., dense, sparse) or 

historical information emphasized a departure from the most widespread modern condition 

(Table 2). In using those estimates for historical vegetation as well, we assumed that recurrent 

disturbances, such as intense fire, landslides, severe winds, patchy feeding by herbivores, and 

human land use (see section 3.1.2), would have created open disturbed area comparable to un- 

vegetated area within modem semi-natural vegetation that is distant from urbanized and 

agricultural lands. Parameter values for classes representing the most intensive land uses were 

drawn from the literature. Estimates were rounded to the nearest 0.05 unit of fractional cover. 

2.4.10. Differences in Fractional Vegetation Cover for the Dormant Season (AVF) 

We developed parameter values consistent with estimated LA1 dynamics for the class and with 

approaches used in heritage land cover classes for land-atmosphere models (Table 2). Note that 

dormant season fractional cover values do not drop linearly with changes in LAI. That is both 

because total cover is a non-linear, saturating function of LA1 and because perennial woody 

plants retain living stems above ground although their leaves may be fully deciduous. 

2.4.1 1. Aerodynamic Surface Roughness Length (zo) and Zero-Plane Displacement Height (D) 

Structural aerodynamic parameters were estimated using the approach developed by Schaudt 

and Dickinson [2000]. We developed a spreadsheet model implementing their equations and 

developed ancillary calculations needed to derive required structural variables from 



physiognomic properties of vegetation layers and phases characteristic of a vegetation unit or 

type of land cover [R. Knox and L. Steyaert, manuscript in preparation, 20071. The resulting 

parameters estimate aerodynamic properties for momentum exchange that are typical of the 

growing season. This model was used for most land cover classes (#33-59). Values for the 

remaining classes were estimated from published measurements of structurally analogous land 

cover (Table 2). 

As would be expected, grassland classes present much less aerodynamic roughness than shrub 

and tree classes. Nonetheless, native tall grasslands and sparsely wooded grasslands (#33, 34, 

35,5 1) had modeled roughness lengths 2 to 12 times those of crops and cleared grasslands 

under intensive agricultural use (#28-#32). Among the forest classes, estimated roughness 

lengths varied from 0.7 m to 3 m. Forests were hardly homogeneous in this property. 

Differences among classes dominated by the trees with similar leaf shapes and 

duration/seasonality (e.g., broadleaf deciduous) greatly exceeded those between classes with 

similar average canopy heights but dominated by trees with contrasting leaf characteristics. 

Note that estimated roughness lengths for the two tallest physiognomic groups (Medium- 

TalVTall Forest, as well as Tall Forest) were greater than values typically measured in present- 

day forests of the temperate zone. 

2.4.12. Vegetation Rooting Depth (d,) 

We derived the effective depth of vegetation rooting zones from revised estimates for the most 

closely analogous BATS classes [Zeng, 20011. Rooting zone depths (Table 2) were 2 m for 

deciduous, mixed forests, native medium-tall grassland, and most wetlands, and were slightly 



shallower for evergreen needleleaf forests (1.8 m). Effective rooting zones of tall grasslands 

and the sparsely wooded grasslands typical of more water-stressed environments were 

somewhat deeper (2.4 m), as were the low mixed open forest class (2.4 m) and shrubland 

classes, #44 and #53 (2.5 m). Rooting depths for herbaceous plant layers of crops, highland 

pasture, open bog or marsh classes were 1 m. Other pastures and hayfields were 1.5 m. More 

extensively modified bareltransitional, residential, and urban classes were assigned rooting 

depths less than 1 m. These rooting depths varied inversely with the intensity of land use. 

Modelers should be aware that absolute maximum depths of woody plants can be much deeper 

[Canadell et al., 19961, and that rooting depths will adapt to the soil moisture and nutrient 

conditions present [Stone and Kalicz, 199 11. 

2.5. Geospatial Analysis to Derive Biophysical Parameter and Land Cover Data 

The land use intensity maps (section 3.1) and biophysical parameter classes (see Tables 1 and 

2) were combined to derive biophysical parameter and land cover data at each time-slice 

(1650, 1850, 1920, and 1992). A land cover change trajectory within each PNV unit was 

defined by assigning a biophysical land cover class (therefore, associated set of biophysical 

parameters) for each land-use intensity category of each time-slice. The result is a land cover 

change trajectory table where the rows are PNV classes, the columns are land use intensity 

categories, and the elements biophysical land cover classes (see Tables S1, S2, and ~ 3 ) . '  A 

particular column (i.e., land use intensity category) within a trajectory table corresponds to a 

land use intensity map, as well as, a biophysical land cover map (i-e., as defined by the set of 

biophysical land cover classes within the column) and its associated set of parameter maps. 



Within a particular time-slice, the land use intensity maps are expressed as fractional areas that 

sum to 1.0 at each location. 

An average biophysical parameter map for a particular time-slice is derived from the joint set 

of land use intensity and parameter maps. That is, multiplying values of a biophysical 

parameter by the corresponding fractional areas, and summing the results at each location, 

produces a map of weighted averages. This approach was applied to derive biophysical 

parameter maps by time-slice for albedo, leaf area index, fractional vegetation cover, and 

canopy height. The average surface roughness value for each pixel was estimated with a 

weighted average of log-transformed roughness lengths [cf. Shuttleworth, 19981. In addition, a 

relative deciduousness index was mapped using a ratio of the max-min change in LA1 divided 

by the total LAI, for LA1 > 0.0. These results are reported in section 3.2. 

Analogously, the land cover trajectory tables and the land use intensity maps were combined in 

a geospatial analysis to derive a set of data layers for biophysical land cover classes that are 

expressed as fractional areas for each time-slice. The column of land cover classes for each 

land use intensity category defines a land cover map, which is converted to a fractional area 

land cover map using fractional areas in the associated land use intensity map. The fractional 

areas of each land cover class occurring in each 20-km cell, in a given time-slice, were 

summed. The result is a set of land cover classes expressed as fractional area layers for each 

time-slice. The fractional area land cover layers (Table 1) and the biophysical parameters 

(Table 2) can be ingested into the land surface component of land-atmosphere interactions 

models. 



3. Results and Discussion 

3.1. Historical Land Cover Condition: Spatial Patterns and Changes over Time 

3.1.1. Overview 

The landscape of the eastern United States was transformed fi-om the pre-colonial vegetation of 

1650 to present-day land cover by increasing levels of human land use intensity (Table 3, 

Figures 1-4). As evident from the decreasing percentage of remnant old-growth vegetation, the 

relatively minimal human disturbance in 1650 had grown to 30% human disturbance by 1850, 

93% by 1920, and, except for small isolated patches, effectively 100% by 1992 (Table 3). 

These land-use intensity categories demonstrate the initial theme of "clearing the forest", with 

the primary drivers of land use change being agricultural expansion, commercial logging, and 

wood-cutting for fuel and other products. They also illustrate subsequent transformations 

through farmland abandonment, forest regeneration, and increasing urbanization and landscape 

fragmentation with the growing population [Williams, 1989; Whitney, 19941. The old-growth 

vegetation of 1650 was spatially heterogeneous as illustrated by the examples of variable 

physiognomic characteristics in Figure 1. By 1850, although 70% of the landscape remained 

relatively undisturbed by humans (Figure 2a), intensive land uses representing 50-100% 

fiactional areas were common in many parts of the country (Figure 2b-d). The 1920 time-slice 

was characterized by intensive land use categories (Table 3) that represented the approaching 

end of the saw timber logging in old-growth "virgin forests" (Figure 3a) and shows the impacts 

of massive land use transformations that led to regenerating forests (Figure 3b), degraded land 



(Figure 3c), and extensive agriculture (Figure 3d-e). The 1992 time-slice represents recent land 

use patterns (Table 3) that were primarily associated with a regrowing forest (Figure 4a), 

residual wetlands and contemporary inland water bodies (Figure 4b), shifting agricultural 

patterns (Figure 4c), and a growing residential-urban component of the landscape (Figure 4d). 

Additional insights on changes in land use intensity since 1650 are illustrated by the fractional 

area distribution of potential saturated soils (Figure 6a-d). 

3.1.2. The 1650 Landscape 

The 1650 landscape of the eastern United States was characterized by spatially heterogeneous 

vegetation patterns at multiple spatial scales. There was spatial heterogeneity in terms of 

species composition, age, and structure associated with: 1) regional-scale geologic history, 

climate, and ecological constraints [Braun, 19501; 2) sub-regional scale vegetation inclusions 

and mosaics; and 3) the land management activities of Native Americans [Williams, 1989; and 

Delcourt et al., 19931. The pre-colonial forest was "not a vast, silent, unbroken, impenetrable 

and dense tangle of trees, nor was it in a state of static equilibrium" [Williams, 19891. 

The PNV units defined by Kiichler [I9641 encompass regional-scale heterogeneity and 

structural information of importance to land-atmosphere interactions studies. To illustrate, 

Figure 1 shows broad physiognomic categories (canopy height and dominant life forms) that 

are aggregated fiom PNV units: non-forest vegetation and low trees (< 10 m average canopy 

height); vegetation "height" mosaics consisting of closed forest (> 10 m canopy height) with 

extensive inclusions (1-5 km size) of lower vegetation dominated by the same life forms (e.g., 

tall pine forests and shrubby pine barrens mapped in one vegetation unit); more continuous 



closed forests (> 10 m average canopy height); and vegetation "type" mosaics where the 

different phases are of distinct life forms (e.g., grassland-forest mosaics). 

Variations in wetlands characteristics, site productivity, and natural disturbance contributed to 

sub-regional scale heterogeneity that is not hlly resolved in the PNV map, yet is directly 

relevant to the understanding and parameterization of the 1650 landscape. Wetlands complexes 

with variable hydroperiods (i.e., seasonal onset, duration, water inundation depth, degree of 

soil saturation, and inter-annual variability) were a dominant component of the land cover 

within the Atlantic and Gulf coastal plains, Florida, the lower Mississippi River valley, 

tallgrass prairie ecosystem, and the northern forests [Dahl, 1990; Whitney, 19941. In fact, the 

total area of wetlands in 1650 was probably twice as large as the area of present-day wetlands 

[Dahl, 19901. Site productivity differences contributed to a wide range in the average size of 

old-growth trees [Braun, 19501, such as found in many accounts of tall, large-diameter trees in 

the original forest [e.g., see Whitney, 1994; Davis, 19961, versus the recently-reported small 

old-growth trees that are located in remote, low productivity sites such as the "Middleburgh" 

red cedars or chestnut oaks [Krajick, 20031. Severe weather events (e-g., hurricanes, tornados, 

flooding, and winter storms), drought, fire, pests, and disease affect the forest species 

composition, age, and canopy structure depending on the spatial scale, severity, and return 

interval of the disturbance [Braun, 1950; Whitney, 1994; Davis, 1996; Runkle, 1996; 

Greenberg et al., 1997; and Foster et al., 20041. Large-scale disturbances caused by lightning- 

ignited fire and blowdowns from hurricanes are common in the northeastern and southeastern 

forests [Runkle, 1996; Foster et al., 20041, while disturbance and gap dynamics are more 

prevalent in the central mesophytic forests [Runkle, 1996; Greenberg et al., 19971. Frequent 



disturbance by lightning-ignited fires maintained open southern pine forests, eastern 

shrublands, tallgrass prairie, and other ecosystems. 

The spatial heterogeneity of the 1650 landscape was influenced by the activities of Native 

Americans prior to 1492 and by the tragic decline of the Native American population as a 

result of widespread disease and massive epidemics that began in the early 1500s following 

contact with European explorers [e.g., see reviews by Williams, 1989; Delcourt et al., 1993; 

Whitney, 1994; Allen et al., 1996; Hicks, 1998; White et al., 1998; Carroll et al., 2002; Foster 

et al., 20041. Native Americans lived in villages, cultivated crops and used fire as a tool to 

manage the landscape throughout much of the eastern United States. The population decline 

was documented during the 1500s and 1600s in New England [ Whitney, 1994; Foster et al., 

20041 and Mississippi River Valley [Delcourt et al., 19931. Although there is ample evidence 

of Native American influence on historical land cover, sources of regional geospatial data are 

not available for reconstructing the circa 1500 land cover. 

We chose 1650 as a time-slice when direct human influences on land cover of the eastern 

United States probably reached a (recent) minimum. Allen et al. [I9961 hypothesized that by 

the early 1800s, the decline in the native population would have led to "50- to 150-year-old, 

relatively even-aged stands that were presumably perceived as being pristine by the European 

settlers". Hicks [I9981 suggested that the central hardwood forests had probably regenerated 

for 150-250 years by the mid- 1700s and early 1800s when naturalists described the forest 

condition. Carroll et al. [2002] suggested that climate and fire including the use of fire by 



Native Americans are the two most important factors that "shaped the pre-European flora and 

fauna" in the Southeast prior to extensive fire suppression. 

3.1.3. The 1850 Landscape 

The 1850 landscape of the eastern United States was in transition from the pre-colonial 

vegetation patterns of 1650 to regenerating forests, villages and cities, and farmlands (Table 3, 

Figure 2a-d). Old-growtWpre-settlement vegetation still characterized approximately 70% of 

the eastern United States and fractional areas of 50% old-growth vegetation were common at 

many other locations (Figure 2a). 

The forest-village disturbance accounted for approximately 17% of the eastern United States 

(Table 3). The spatial patterns and fractional areas for this land-use intensity category (Figure 

2b) represent recovering or regenerating vegetation in disturbed or cleared forests on non- 

farmland; farm woodlots with selective logging for fuel, buildings and fences andlor livestock 

grazing; or a small component consisting of roads, villages, and cities depending on population 

density. In general, this disturbed vegetation (Figure 2b) corresponds to the 1650 vegetation 

types, but with altered biophysical parameters (section 3.2). Specifically, forest recovery was 

underway in New England, New York, and northern Ohio where commercial logging was 

coming to a close [Whitney, 19941. Elsewhere, groundcover, shrubs, and small trees in farm 

woodlots were disturbed by livestock grazing. Forest disturbance was widespread near 

populated areas because of extensive annual wood-cutting to provide fuel for home heating. 

Sparse vegetation and scrubby oaks characterized parts of central and eastern Pennsylvania, 

eastern Maryland, the Blue Ridge Mountains in Virginia, and southeastern Ohio because of 



intensive wood-cutting to support charcoal-fired blast furnaces for iron making [Williams, 

19891. Vegetation on floodplains of major rivers was disturbed by fuelwood cutting for 

steamboats or selective logging utilizing water transport [Williams, 19891. By 1850, white pine 

was regenerating on abandoned croplands in New England [Foster et al., 20041. 

Lowland mixed agriculture (Figure 2c) was diverse, including row crops, grain crops, pasture, 

and hay. Cotton was primarily grown in the southern Piedmont and Blackbelt regions. 

Highland agriculture (Figure 2d) was characterized by pasture and hay at locations where 

climate, topography, and soil were typically not ideal for row and grain crops [Williams, 1989; 

Whitney, 1994; Foster et al., 20041. 

3.1.4. The 1920 Landscape 

By 1920, approximately 90% of the eastern United States had been transformed by intensive 

land use (Table 3, Figures 3a-f). The landscape was characterized by remnants of old-growth 

vegetation (7%; Figure 3a), a young regenerating forest (28%; Figure 3b), degraded land (14%; 

Figure 3c), extensive mixed agriculture (44%; Figure 3d-e), and growing population centers 

(5%; Figure 3f). The highly disturbed state of the 1920 landscape was the result of intensive 

commercial logging, extensive mixed agriculture including management of woodlots, and 

environmental degradation due to soil erosion and farming on marginal lands [e.g., see 

Greeley, 1925; Shands and Healy, 1977; Williams, 1989; Whitney, 1994; and MacCleery, 

19921. 



The remnant old-growth vegetation was mainly located in northern Maine, the Great Lakes 

states, Florida, and especially in the states of the lower Mississippi River basin where most of 

the remaining saw-timber quality forests of economic value were located (Figure 3a). The 

forest composition and structure for these sites generally corresponded to 1650 vegetation. 

Disturbed and regenerating forests consisted of second or third growth saw timber, cordwood, 

young trees, tree root sprouts, disturbed farm woodlots, and regrowth on abandoned croplands 

(Figure 3b). Across the northern states, young deciduous trees followed intensive logging with 

the old-growth pines and hemlock trees replaced by cherry and maple trees in Pennsylvania 

and by aspen and birch trees in the Great Lakes states [Whitney, 19941. The land use intensity 

is illustrated by the cutting of second and third growth trees for low-quality box and veneer 

products, and by the abundance of young broadleaf trees because of stump sprouts that were 

coppiced for firewood [ Whitney, 19941. Although the species composition of trees in farm 

woodlots resembled the original forest, these woodlots had been changed by long-term culling 

of saw timber, woodcutting for fuel, and extensive grazing by farm livestock especially hogs. 

By 1920, regenerating deciduous trees were replacing the recently logged white pine stands on 

abandoned croplands in New England [Foster et al., 20041. Also by 1920, a lasting ecological 

change was underway in New England and the Mid-Atlantic states as the chestnut blight had 

infected more than 80% of the trees and the disease was spreading to the south and west. 

Similar patterns existed across the central and southern states. Shortleaf pine and scrub oak 

followed the clear-cutting of old-growth longleaf andlor slash pine that grew extensively in the 

coastal plain fi-om Virginia to Texas; the cutover land was characterized as approximately 33% 



regenerating saw timber, 33% scrubby cordwood, and the remainder barren [Williams, 19891. 

Following recent logging, early regeneration was underway in the Appalachians and the 

hardwood regions of the lower Mississippi River basin. Saw timber baldcypress trees had been 

extracted from wetlands of Louisiana and Florida. Loblolly pine was regenerating on 

abandoned cotton or tobacco fields in the Piedmont region and elsewhere [Williams, 19891. 

Sparse vegetation, scattered shrubs, "scrub" trees and barren land cover characterized 15-20% 

or more of the landscape across the northern and southern tiers of states (Figure 3c); this 

degraded land had poor forest regeneration [Shands and Heal), 1977; Williams, 1989; Whitney, 

19941. In the colder north, many cutover lands did not regenerate and remained barren or with 

open, bushy regrowth [Williams, 19891. Regeneration was also slowed by failed crop farming 

attempts on unsuitable logged-over lands and by extensive wildfires such as in Maine, the 

Adirondacks, Pennsylvania, Michigan, Wisconsin, and Minnesota. Approximately 33% of the 

southern pine land was characterized as barren. Intensive fire, flooding, and soil erosion 

contributed to not restocking forest land in the Blue Ridge Mountains, southern Appalachians, 

and Monongahela Mountains. Over-grazing and soil erosion on marginal farmland also led to 

sparse vegetation and poor regeneration [Williams, 1989; Whitney, 1994; and Foster et al., 

20041. 

The components of lowland and highland agriculture on improved farmland reflected intensive 

land use practices to produce food for home and the market (Figures 3d-e). The upper Midwest 

was the primary region for production of row and grain crops with secondary production 

regions in the southeast and the Mississippi River bottomlands (Figure 3d). Pasture grasses and 



hay were grown in the north and in the highland regions (Figure 3e). Although climate and soil 

conditions generally determined suitable agricultural crops, diverse farming was widely 

practiced in a largely rural economy. The online supplemental material (Text S3) provides 

additional details on agricultural practices for 1920.' 

3.1.5. The 1992 Landscape 

The 1992 land cover was broadly characterized by a regrowing forest, decreasing rates of 

annual wetlands losses, continuing relocation of agricultural production according to land 

suitability, and increasing fragmentation of the landscape, due in part to the growth and spread 

of residential areas, urbanized complexes, and transportation networks, frequently at the 

expense of forest and agricultural land. The land-use intensity categories for the regrowing 

forest (43%; Figure 4a), wetlands and inland water bodies (1 1%; Figure 4b), mixed agriculture 

and grasslands (42%; Figure 4c), and residential and urban land use (3%; Figure 4d) 

represented approximately 99% of the eastern United States (Table 3, Figures 4a-d). 

Forest regrowth was widespread and fractional areas > 70% were common within the 

Appalachian Mountains and parts of the lower Mississippi River basin (Figure 4a). Overall, the 

"rebirth" of the eastern forest represents a remarkable land cover transformation given the low 

expectations of many experts in the early 1920s for the regeneration of saw timber-quality 

forest or the potential recovery of degraded landscapes [Clawson, 1979; Williams, 1989; 

MacCleery, 1992; Whitney, 1994; and Smith et al., 20021. In referring to the recovery of the 

U.S. National Forests in the eastern United States, Shands and Healy [I9771 suggested that 

many conservationists and foresters of the early 1900s would be surprised at the recovery of 



these "lands that nobody wanted". Eastern timberland was dominated by hardwood tree cover 

types with 80% coverage in the northern region and more than 50% coverage in the southern 

region [Smith et al., 20021. Both natural and planted pine silivculture are major sources of 

landscape dynamics in the south [Allen et al., 1996; Alig and Butler, 20041. Pine plantations in 

the south accounted for approximately 14% of the forest area; timber management represented 

a major source of human disturbance [Alig and Butler, 20041. In contrast, the forest was also 

becoming more fragmented, while residential-urban development resulted in a slight net loss of 

forest land along the eastern seaboard [Riitters et al., 20021. 

The remaining wetlands were predominately located in the lower Mississippi River valley, 

Florida, Gulf and Atlantic coasts, and the northern parts of the Great Lakes states as indicated 

in Figure 4b, which also depicts the larger inland water bodies. 

Primary agricultural production was in the Upper Midwest and the lower Mississippi River 

valley (fractional areas of 70-go%), while secondary mixed farmland regions such as the 

southeastern coastal plain represented fractional areas on the order of 20-40% (Figure 4c). 

Pastureland as a fraction of total farmland was typically 20% or less, but increased to 40% or 

more on the less suitable farmland within the Piedmont and Appalachian states, and up to 60- 

80% of total farmland in pasture throughout most of Florida and to the west of the lower 

Mississippi River valley [US. Department of Commerce, 19931. The online supplemental 

material (Text S3) provides additional details on agricultural practices in 1992.' 



The residential and urban land use was geographically variable with the highest land use 

intensities associated with large cities and dense population centers, such as within the Boston 

to Washington, D.C. corridor (Figure 4d). Regional contributions at the state-level varied from 

1-2% for states with low population densities to 17-20% in the Northeast. Rural population 

densities within the eastern United States had increased from about 25 persons/km2 in 1920 to 

100 persons/km2 and frequently more than 700 persons/km2 by 1990, as the total population of 

the conterminous United States increased from approximately 105.3 million persons in 1920 to 

243.7 million persons in 1990 [Waisanen and Bliss, 20021. Recent studies have estimated the 

total developed area within the conterminous United States for the 1990s time-frame in the 

range of 1-2% [Imhoffet al., 1998; Vogelmann et al., 2001; and Elvidge et al., 20041. 

Land use suitability was perhaps the dominant controlling factor that determined the 1992 

patterns of agricultural production, wetlands, and the regrowing forest in the eastern United 

States. Ifthe artificial drainage of wetlands for agriculture is considered, the Suitability of 

Relief and Soil for Crops Map (Figure 5) from Hart [I9681 and Barnes and Marschner [I9581 

represents a first-order land use suitability analysis to help understand how the recent patterns 

have evolved over the past century. Figure 5 incorporates regional climate, topography, and 

soil as determinants of Generalized Land Resource Areas with emphasis on the favorability of 

land for crops [Barnes and Marschner, 19581. Historically, the "poorly drained" land 

suitability category was often viewed as a candidate for artificial drainage to permit improved 

agricultural crop farming. In fact, significant portions of the "very favorable" land suitability 

category within the Upper Midwest (Figure 5) included pre-settlement wet prairie wetlands 

that were artificially drained during the late 1 800s or early 1 900s [ Whitney, 1994; Dahl, 19901. 



Artificial drainage was also used to convert t'poorly drained" wetlands to agricultural cropland 

in the lower Mississippi River valley, Florida, and the southeastern coastal areas. These are 

also the areas where irrigated agriculture in 1992 was most common. Therefore, Figure 5 helps 

to explain the agricultural patterns of 1920 (Figures 3 d-e) and their transformation to 1992 

patterns, including intensive, highly mechanized row and grain crop production areas (Figure 

4c). The intensive and secondary agricultural production areas in 1992 (Figure 4c) generally 

correspond to the very favorable and medium favorable cropland suitability categories. The 

less favorable crop suitability categories were associated with low economic returns and 

abandoned farmland that reverted to forest or land that was placed in conservation reserve 

programs [Hart, 1968; USDA, 20001. According to Figures 4a and 5, the 1992 forest was 

generally associated with the less suitable land categories for crops throughout the eastern 

United States. 

3.1.6. Major Land Cover Changes Since 1650 

Land cover changes since 1650 have significantly modified the properties of the land surface, 

therefore affecting land-atmosphere interactions involving the water, energy, and carbon 

cycles. Land use activities have: fundamentally altered vegetation regions; modified the forest 

species composition and structure; reduced the area of potential saturated soils during the early 

growing season; shifted patterns of C3/C4 vegetation; and modified land surface properties 

through fragmentation of the landscape and the construction of impervious surfaces. 

For example, the tallgrass prairie region of 1650 has been almost entirely converted [ Whitney, 

19941 to row and grain crop agriculture or to intensively grazed pasture dominated by non- 



native plants. Only sparse remnants of longleaf and slash pine-dominated communities remain 

in the Southeast [Williams, 1989, Ware et al., 1993; Frost, 1993; and Early, 20041. Land use 

changes have contracted the distribution of several less extensive types including: Pocosin, 

Elm-ash forest, Everglades, and fire-dependent pine-barrens (formerly typical of sand plains 

and sand ridges in glaciated regions and across the Atlantic coastal plain). Because of intensive 

land uses or modified disturbance regimes (e.g., fire, flooding), the basic dynamics and 

structure of recovering ecosystems often diverge from characteristic properties of the former 

land cover. 

Logging practices, fire suppression, changed patterns of wild fire, farmland abandonment (after 

soil modification by cultivation), livestock grazing, deer browsing, insect outbreaks, and novel 

diseases represent some of the many factors that have contributed to changes in the forest 

composition and structure since 1 650 [Williams, 1 989; Whitney, 1994; Greenberg et al., 19971. 

Following logging, aspen, birch and other deciduous trees have generally replaced the 

extensive old-growth pine forests in the Great Lakes states [Whitney, 1994; Cole et al., 19981. 

Browsing by large deer populations has affected the forest understory and regeneration 

[ Whitney, 19941. By the late 20th century, introduced insects and pathogens frequently killed 

canopy fir, hemlock, oak, and white pine trees; most of the large American elms are gone and 

nearly all native chestnuts and chinquapins have met a similar fate. These factors contributed 

to persistent changes in vegetation physiognomy. 

Artificial land drainage resulted in major differences between the 1650 and 1992 spatial 

patterns of potential saturated soils for the eastern United States (Figure 6). In 1650, potential 



saturated soils during the early summer growing season ("normal" or typical preseason 

precipitation) were widespread throughout the Atlantic and Gulf coastal areas, lower 

Mississippi River valley, prairie grasslands, and across the northern forest states (Figure 6a). 

Because artificial drainage was not yet pervasive, the patterns of potential saturated soils for 

1650 and 1850 are quite similar (Figures 6a and 6b). By 1920, the widespread introduction of 

artificial drainage systems had led to major reductions within the Midwestern corn-belt states 

with more modest changes elsewhere (Figure 6c). The 1992 map of potential saturated soils 

contrasts sharply with the maps for earlier time-slices (Figure 6d). 

The results from our analysis of potential saturated soils for the 1650 time-slice are consistent 

with the estimated area of total wetlands for the conterminous United States as reported by 

Dahl [I9901 and NRC [1995]. For example, Dahl [I9901 provided state-by-state estimates of 

the wetlands area in the 1780s and 1980s for the conterminous United States. Based on the 

state-by-state estimates of Dahl [I9901 for the 3 1 states entirely in our study area, wetlands 

have been reduced from approximately 20% of the land area during the 1780s to 8% of the 

land area by the 1980s. By 1992, irrigated cropland had increased to 1.4% of this same area as 

estimated from [Vesterby and Krupa, 19971. Information on the spatial distribution, timing, 

and quantity of crop irrigation may be important to some modeling studies particularly those 

focused on Florida or the lower Mississippi River valley. 

Conversion of natural vegetation to agricultural crops and pasturelhay grasses (section 3.1) has 

changed the distribution of vegetation having C3 versus C4 photosynthetic pathways. The C3 

grasses/crops tend to be more active at cool temperatures, less active at high temperatures, use 



water less efficiently, and be less tolerant of drought than C4 grasseslcrops [see the species 

tabulation and review of Waller and Lewis, 19791. In general, agricultural production has 

introduced extensive C3 (cool season) vegetation into the eastern United States including C3 

crops (e.g., wheat, soybeans, barley, oats, rye, rice, cotton, and peanuts) and C3 pasturehay 

(e.g., alfalfa, orchard grass, fescue, perennial ryegrass, and Kentucky bluegrass). In contrast, 

the major C4 crop is corn (maize) with contributions from sorghum and sugarcane. The 

conversion of the C4 (warm season) dominated grasslands of the tallgrass prairie has led to 

large near-homogeneous blocks of corn and soybeans, while corn also has replaced forest trees 

(C3). Both warm and cool season turf grasses are grown and irrigated in residential areas 

[Milesi et al., 20051. 

3.2. Biophysical Parameter Maps 

3.2.1. Changes in Broadband Solar Albedo 

The significant changes in patterns of peak-season land surface albedo among the 1650, 1850, 

1920, and 1992 time-slices (Figure 7a-d) relate to patterns of change in land use intensity 

(section 3.1). The typical albedo for the 1650 pre-settlement vegetation ranged from 0.09-0.10 

in evergreen needleleaf forests of the northern Great Lakes states, higher mountains, and 

coastal Maine, to 0.14-0.15 for the central deciduous broadleaf forest region, wooded 

grasslands and grassland prairies. Higher values (2 0.2) were restricted to barrier islands and 

some Florida sand ridges. 



The albedo pattern for 1850 (Figure 7b) is analogous to patterns in the 1850 land use intensity 

maps (Figure 2a-d). Relative to 1650, the average albedo for 1850 increased by about 0.02 in 

disturbed and regenerating forests, with comparable or larger albedo increases where forests 

were converted to mixed agriculture. 

In 1920 (Figure 7c), the difference in albedo from 1650 was quite dramatic throughout most of 

the eastern United States, with average albedo typically between 0.16 and 0.19. Contrasted 

with 1850, the effects of recent deforestation, land degradation, and intensive agricultural 

production are quite evident across the southern tier of states fiom the Carolinas to the states in 

the lower Mississippi River basin. The relatively high peak-season albedo values are associated 

with the highly disturbed landscape of 1920 (see section 3.1.4.). 

By 1992 (Figure 7d), return to lower albedo (0.12-0.15) across much of the region was caused 

by forest regrowth and the return of closed forest cover on former agricultural lands, especially 

across the southern states. Across the corn (maize) and soybean belt of the Midwest, average 

albedo remained elevated (0.18); average albedo values characteristic of intensive agriculture 

became common in the lower Mississippi valley. 

The widespread decreases in average albedo from 1920 to 1992 have clear implications for 

direct radiative forcing and land-atmosphere interactions across the eastern United States. 



3.2.2. Changes in Average Leaf Area Index (LA) 

Relatively high peak-season leaf areas (3.6 to 5.5 times the ground area) were typical of all 

four time-slices (Figure 8a-d), as expected for vegetated land in a humid temperate climate. 

Forest dominated landscapes had LAI between 4.6 and 5.5. Native grasslands and many 

landscapes dominated by agriculture had average LA1 between 3.1 and 4.5. These average 

values were common in the northeastern states by 1850 (Figure 8b) and in 1920 were typical 

across the eastern United States, except in portions of the South, in northern peatlands, and 

Maine (Figure 8c). The LA1 map for 1992 (Figure 8d) displays local features attributable to 

urban centers and inland water bodies. It also shows larger areas of reduced average LA1 

associated with intensive agriculture in former tall grasslands, formerly forested areas of 

Indiana and Ohio, and formerly flood-prone bottomlands of the lower Mississippi River valley. 

3.2.3. Changes in the Relative Deciduousness of Leaf Area 

An index of relative deciduousness (average ALAI divided by the average LA1 for LA1 > 0.0) 

indicated an increase in the average fractional cover of seasonally deciduous life forms after 

1650 (Figure 9a-d). In 1650, evergreen and mixed evergreen-deciduous forests and shrublands 

dominated the region of the Great Lakes states, northern New England, New York, and the 

Southeast (Figure 9a). A belt of cold-deciduous forest extended from southern New England to 

the west and then southwest to the prairie grasslands at the western edge of our study area. 

Predominantly deciduous forest (broadleaf and needleleaf) dominated southern river 

floodplains and swamp forests. Winter loss of 70% to 80% of peak season LA1 was also 

characteristic of wooded grasslands of south Florida, of prairie-forest transition areas, and of 

the Blackbelt. Note that this deciduousness index describes the aggregate dynamics of all 



layers of green vegetation, not just the upper canopy or the economically important species. 

Hence these maps may appear somewhat different from maps derived by classification of 

named biomes (e.g., needleleaf evergreen forests) or from characteristics of trees making up a 

plurality of the stocking in Forest Type Groups [see definitions in Smith et al., 20021. 

In most of the eastern United States, average deciduousness tended to increase with increasing 

population and agricultural development. The map for 1850 (Figure 9b) shows pervasive 

changes along the Atlantic coast, east of the Appalachian Mountains, and in the Ohio River 

drainage and the region of the lower Great Lakes. Along with the effects of continued 

westward expansion of widespread agriculture, the 1920 map (Figure 9c) reflects the harvest of 

nearly all economically valuable old-growth forests. In response to initial cutting, deciduous 

trees capable of regenerating from cut stumps or residual roots became dominant in many 

northern conifer forests. Southern long-leaf pine woodlands, once very extensive, were semi- 

deciduous with their frequently burned understories of grasses, perennial herbs, broadleaf 

shrubs, andor small deciduous trees [Frost, 19931. The maps for 1920 (Figure 9c) and 1992 

(Figure 9d) indicate an increase in deciduousness along the southeastern coastal plain, 

consistent with removal of this slow-to-regenerate pine and release of competing deciduous 

vegetation. 

Although forest recovery by 1992 contributed to a reduction in the average deciduousness of 

green leaf area (Figure 9d) compared with 1920, persistent differences from 1650 remained, 

not only in agricultural and residential areas, but also in the forests. Evergreen vegetation 

continued to be less important than in 1650. 



3.2.4. Changes in Average Canopy Height (h) 

Across the eastern United States, there were pervasive changes in the average height of 

vegetation during the intervals spanned by 1650, 1850, 1920, and 1992 (Figure 10a-d). The 

pattern in 1650 (Figure 10a) was characterized by extensive areas of tall forest (average 30 m) 

and medium-tall to tall forest (average 24 m). Even in mountainous regions, shorter forests 

growing in shallow soils of steep slopes and ridges would be complemented by taller forests of 

sheltered coves and valleys [Braun, 19501. In contrast, the upper Great Lakes region had large 

areas of vegetation with heights averaging fiom 9 to 18 m, as well as forests with average 

heights greater than 20 m. Wooded grasslands of the prairie-forest transition commonly had 

groves of low to medium tall trees (< 25 m) in those locations protected from frequent intense 

fires. Where intense fire was more prevalent, trees became multi-stemmed shrubs, similar in 

stature to the dominant tall or medium-tall grasses (1-2.5 m). Shorter vegetation was also found 

in marshes and bogs, on some unusual soil types, and as vegetation fringing the Atlantic and 

Gulf coasts. 

By 1850, short canopies associated with agriculture had become the dominant cover of areas 

with dense settlement and extensive agriculture (Figure lob). Forested landscapes with average 

heights of 24 m or more remained in less accessible highlands, in thinly settled parts of the 

South, in parts of northern New England and the upper Great Lakes region, and west of the 

Mississippi River (Figure lob). Few of these large blocks of tall old-growth forest survived to 

1920. Landscapes with average canopy heights greater than 15 m were rare (Figure 10c). In 

1920, most landscapes of the eastern United States had average canopy heights less than 10 m. 



The interval fiom 1920 to 1992 saw recovery of forest cover, with limited recovery of forest 

stature. By 1953 timberland area had expanded to near current levels, most of this land had 

adequate tree populations, and the "non-stocked" portion steadily declined from 1953 to 1997 

[Smith et al., 20021. By 1992, average canopy heights of at least 7 m were typical in most of 

the eastern United States (Figure 10d). Yet, we identified no extensive areas with average 

heights greater than 18 m in 1992 (Figure 10d). Areas supporting large-scale agriculture were 

characterized by average heights of 3 m or less. In contrast with the resilience of leaf area 

index, average canopy stature had not recovered. 

3.2.5.. Changes in Aerodynamic Surface Roughness Length (zo) 

The spatial patterns and changes in surface roughness and zero-plane displacement (not shown) 

broadly paralleled the patterns and changes in vegetation canopy height, which along with 

canopy density and morphology, determines aerodynamic roughness properties governing 

momentum exchange. 

To provide insight into likely consequences for land-atmosphere energy exchanges, we 

mapped average roughness lengths on log scales (Figure 1 la-d). In 1650, tall and medium-tall 

to tall forests over most of the eastern United States had roughness lengths of at least 170 cm. 

Shorter roughness lengths appear in the Great Lakes region, along the prairie-forest transition, 

along coastal fringes, and sporadically in the interior (Figure 1 la). Roughness of 30 cm or less 

was found in grassland or tall marsh vegetation. Some open bogs and coastal marshes averaged 

less than 12 cm. 



By 1850, densely settled regions had average aerodynamic properties more characteristic of 

grassland or wooded grassland than of forest (Figure 1 1 b). By 1920, vast areas with 

characteristic roughness lengths of 5 - 10 cm appeared (Figure 1 1 c), extending from the former 

tallgrass prairies to the east across Ohio and even, sporadically, through the mid-Atlantic 

region. Average roughness greater than 150 cm became rare and roughness greater than 90 cm 

was unco.mmon (Figure 1 1 c). 

Extensive areas of low-roughness land cover remained in 1992, both in regions where large- 

scale agriculture was the dominant land use and also scattered through the rest of the eastern 

United States (Figure 1 Id). Roughness length reveals the fragmented character of forest 

vegetation at this time. Landscapes with characteristic roughness lengths of 100 to 150 cm 

were mixed with areas that retained non-forest aerodynamic properties. A few large contiguous 

blocks with roughness typical of medium-tall closed forests emerged, for example, in the 

Allegheny highlands of West Virginia and eastern Kentucky (Figure 1 ld). These patterns in 

roughness at 10-km spatial scales are consistent with distributions of forest fragmentation at 

finer scales [see Riitters et al., 20021. The least fragmented forests at finer scales were in the 

same areas as our contiguous blocks having characteristic roughness lengths greater than 90 

cm. In 1992, much of the eastern United States exhibited the discontinuous texture once typical 

of the prairie-forest transition (e.g., southwest of Lake Michigan in 1650 or 1850). The 

potential influence on weather patterns from changes in fragmentation of land cover deserves 

further exploration [for example, see de Goncalves et al., 20041. 



3.3. Implications for Land-atmosphere Interactions 

Our reconstructed land cover and biophysical parameter dataset for the eastern United States at 

a nominal 20-krn grid scale presents new opportunities for coupled land-atmosphere 

interactions modeling experiments. A consistent set of biophysical land cover classes 

characterizes the massive land use transformations across the 1650, 1850, 1920, and 1992 

time-slices. This new dataset can be viewed as a set of land cover fractional areas (Table 1)- 

with an associated biophysical parameter table (Table 2), where each time-slice is represented 

with a subset of the land cover classes that are weighted according to the fractional areas in the 

corresponding land-use intensity categories (Figures 1-4). We have also developed a potential 

saturated soils data layer (peak growing season for normal preseason precipitation) for each 

time-slice (Figure 6) as a basis to prescribe soil moisture boundary conditions in land- 

atmosphere interactions sensitivity tests. In contrast with the parameter-by-parameter averages 

discussed above (section 3.2), the final biophysical land cover data layers preserve the 

combination of parameter values characteristic of each distinct surface type. These layers will 

support modeling experiments either using sub-grid mosaics [e.g., Koster and Suarez, 19921 or 

formal parameter scaling with the fractional abundances [e.g., Shuttleworth, 19981. Therefore, 

the combined effects of dramatic historical changes in albedo (e.g., widespread decreases from 

1920 to 1992), land surface roughness, rooting depths, and potentially saturated soils can be 

quantified and the feedbacks understood. 

Some of the potential implications for land-atmosphere interactions modeling studies include: 



1) The land cover condition analysis and land use intensity maps (Section 3.1 ; Figures 1-4,6) 

quantify the magnitude of historical land use transformations, establish the foundation for the 

reconstructed historical land cover data, and provide information for land surface 

parameterization in coupled land-atmosphere interactions modeling experiments that are 

designed to quantify the effects of historical land cover and land use change over the past 350 

years. 

2) The biophysical parameter maps (Figures 7-1 1) quantify significant changes across the 

1650, 1850, 1920, and 1992 time-slices due to these large land cover transformations. The 

differences reflect the progressive alteration of the 1650 vegetation to the intensive land use 

conditions of 1920 and the transformation to 1992 land use patterns (Section 3.1). In addition 

to agricultural and residential-urban land use, the biophysical characteristics of the 1992 land 

cover reflect large changes in the structure and composition of forests. 

3) Sensitivity tests with coupled land-atmosphere interactions models are needed to investigate 

the complex interrelationships and consequences of the historical land cover and biophysical 

parameter changes on the land surface energy, radiation, surface hydrology, and carbon 

budgets; on fluxes and exchanges between the land surface and the lower atmosphere; on 

atmospheric boundary layer processes; on convective precipitation patterns; and landscape 

forcing of mesoscale- to synoptic-scale wind circulations [cf. Copeland et al., 1996; Bonan, 

1999; and Roy et al., 20031. 

4) The potential saturated soils data layers for the 1650, 1850, 1920, and 1992 time-slices 

(Figure 6) provide the basis for a new generation of land-atmosphere interactions sensitivity 

tests to investigate the effects of soil moisture availability on land processes, regional weather 

and climate variability, interactions with historical changes in biophysical parameters, and 



precipitation feedbacks. In addition, such sensitivity experiments can also investigate the 

effects of artificial inland water bodies (reservoirs, lakes, and ponds) which were extracted 

fkom the 1992 NLCD as a separate data layer. 

5) These land cover and biophysical parameter data for the 1650, 1850, 1920, and 1992 time- 

slices represent an opportunity to refine carbon budget models for the eastern United States, as 

related to the role of land use change in carbon dynamics and using a variety of approaches 

[e.g., Houghton et al., 1999; Hurtt et al., 2002; or Eastman et al., 200 11. These data may also 

support research on coupled carbon, climate, and land use dynamics. 

4. Concluding Remarks 

This reconstructed 20-km land cover and biophysical parameter dataset for the eastern United 

States will support studies of coupled land-atmosphere interactions to investigate the 

consequences of historical land cover change on the water, energy, and carbon budgets; surface 

hydrology; regional weather and climate variability; and ecosystem dynamics. Reconstructed 

land use intensity maps, including potential saturated soils, characterize the spatial patterns of 

historical land cover condition and changes in time for the 1650, 1850, 1920, and 1992 time- 

slices. Mutually consistent land cover and biophysical parameter classes were combined with 

the results of the land use intensity analysis to map historical biophysical land cover and 

parameters in each time-slice. The effects of historical land cover change are evident in the 

time-series maps of average biophysical parameters for land surface broadband solar albedo, 

leaf area index, an index of deciduousness, canopy height, and surface roughness. These 



historical land cover and land use changes potentially affect land-atmosphere interactions, 

altering the water, energy, and carbon cycles. 

The eastern-half of the Unites States has experienced extensive land cover transformations 

over the past 350 years. Land use change has fundamentally altered the land cover of entire 

vegetation regions (e.g., wetland forests in the lower Great Lakes region and lower Mississippi 

River floodplain, tallgrass prairie, and southeastern pine savannas and open woodlands). Forest 

management practices, pests, and disease have modified forest composition and structure. 

Wetlands have been converted by intensive agriculture, plantation forestry, flood control, 

navigable waterway development, and urban development. Few areas of the eastern United 

States have escaped considerable alteration by human land management. (Even these have 

been exposed to increases in the average partial pressure of atmospheric COz, enhanced 

nitrogen deposition, and changing distributions of anthropogenic aerosols, as well as numerous 

human-introduced pests, pathogens, and invasive exotic competitors.) Although semi-natural 

vegetation re-established on many former cut-over or agricultural lands during the 20th 

century, it typically persists in landscapes fragmented by transportation corridors, residential- 

urban development, agriculture, industrial forestry, and other intensive land uses. Recent land 

cover provides an insufficient basis for understanding the functional responses and feedbacks 

of historical land cover. Modeling experiments and sensitivity tests incorporating coupled land- 

atmosphere interactions are needed to understand and quantify the feedbacks, inter-regional 

connections, and integrated consequences of these land cover and land use changes. 
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1620 Table 1. Biophysical Land Cover Classes. Usage by time-slice: (A) abundant, accounting for > 

1621 3% of the study area or a least 100,000 km2; (+) required to depict the range of distinct land 

1622 cover types important at the time. 

Class Time-Slice Description andor Vegetation Physiognomy 
ID 1650 1850 1920 1992 

UrbanBuilt-uplImpervious Surface 25 + 
ResidentiaVUrban Trees and Grass 26 A + 
Bare GroundITransitional 27 + 
CropMixed Farming 29 A A A 
Highland PastureKIayISome Crops 30 A A + 
Open Infertile Grassland 3 1 + + + + 
Well-grazed Tall Grass PastureMay 3 2 + + + 
Medium-Tall Grass 33 + + 
Tall GrassISparsely Wooded Grassland 34 A A + + 
Open Deciduous Broadleaf Wooded Grassland 3 5 A A 
LowMedium-Tall Evergreen Needleleaf Forest 3 6 + + + + 
Medium-Tall Evergreen Needleleaf Forest 3 7 + + + + 
LowITall Evergreen Needleleaf Forest 38 + + + + 
Low Deciduous Broadleaf Forest Regeneration 39 + + 
LowMedium-Tall Deciduous Broadleaf Forest 40 A A + 
Medium-Tall Deciduous Broadleaf Forest 4 1 + A + A 
Medium-TalVTall Deciduous Broadleaf Forest 42 A A + 
Tall Deciduous Broadleaf Forest 43 A A + 
Eastern Mixed Shrubland 44 A + 
Low Mixed Open Forest 45 + + + + 
Low Mixed ForestJEarly Forest Regeneration 46 + + 
LowIMedium-Tall Mixed Forest 47 A A + 
Medium-Tall Mixed Forest 48 + + + A 
Medium-TalVTall Mixed Forest 49 A A + 
Tall Mixed Forest 50 A A + 
Marsh with patches of evergreen or deciduous trees 5 1 + + + + 
Low Mixed TreesIShrubs Bog 52 + 
Low Evergreen WoodedShruby Wetland 53 + + + + 
Marsh with low deciduous trees 54 + + 
LowMed.-Tall Evergreen Broadleaf Forested Wetland 55 + + + + 
Semi-open, Semi-deciduous Bog 56 + + + + 
Medium-Tall Deciduous Swamp Forest 57 + + + A 
Medium-TalVTall Deciduous Swamp Forest 5 8 A A + 
Open Bog or Marsh 59 + + + + 
Lakes, Rivers, Streams and Inland Waters 60 + + + A 

1623 



Table 2: Parameter Table for Biophysical Land Cover Classes. Symbols: ID = numeric identifier for 
the class; Albedo = shortwave broadband land surface albedo; Emissivity = land surface emissivity for 
longwave radiation; LA1 = vegetation leaf area index (m2/m2); ALAI = difference in LA1 between peak 
and dormant seasons; VF = maximum fractional vegetation cover; A VF = difference in fractional 
vegetation cover between peak and dormant seasons; zo = aerodynamic roughness length (m); D = 

zero-plane displacement height (m); d,. = vegetation rooting zone depth (m); h = average height of the 
tallest vegetation layer (m). 

ID Albedo Emis- LAI ALAI VF AVF zo D d,. h Summary Description 
sivity 

Urban/Built-up/Impervious Surface 
Residential~Urban Trees & Grass 
Bare Ground/Transitional 
Irrigated Crop 
Crop/Mixed Farming 
Highland PastureIHaylSome crops 
Open Infertile Grassland 
Grazed Grass PastureIHay 
Med.-Tall Grass 
Tall GrassISparsely Wooded Grassl. 
Open Decid. Brdlf. Wooded Grassl. 
Low/Med.-Tall Evrgr. Ndlf. Forest 
Med.-Tall Evrgr. Ndlf. Forest 
LowITall Evrgr. Ndlf. Forest 
Low Decid. Brdlf. Forest Regen. 
Low/Med.-Tall Decid. Brdlf. Forest 
Med.-Tall Decid. Brdlf. Forest 
Med.-TalVTall Decid. Brdlf. Forest 
Tall Decid. Brdlf. Forest 
Eastern Mixed Shrubland 
Low Mixed Open Forest 
Low Mix. Forest/Early Forest Regen. 
Low/Med.-Tall Mixed Forest 
Med.-Tall Mixed Forest 
Med.-TalVTall Mixed Forest 
Tall Mixed Forest 
Marsh with patches of trees 
Low Mixed TreesIShrubs Bog 
Low Evrgr. Shruby Wetland 
Marsh with low Decid. trees 
Low1Med.-Tall Evrgr. Brdlf. Wetl. 
Semi-open, Semi-decid. Bog 
Med.-Tall Decid. Swamp Forest 
Med.-TalVTall Decid. Swamp Forest 
Open Bog or Marsh 
Inland Waters 



1623 Table 3. Land-Use Intensity (LUI) Categories, Percent of Study Area, and Descriptive 

1624 Information for the 1650, 1850, 1920, and 1992 time-slices within the Eastern United States. 

1625 Categories in each time-slice are ordered according to increasing LUI. 

1626 

Time- 
Slice Land-Use Intensity Category Area Description 

1650 Old-Growth Vegetation 

1850 . Old-Growth Vegetation 
Forest-Village Disturbance 
Highland Agriculture 
Lowland Agriculture 

1920 Remnant Old-Growth 
Young Regrowing Forest 
Non-Forest Vegetation 
Degraded Land 
Highland Agriculture 
Lowland Agriculture 
Residential and Urban 

1992 Regrowing Forest 
Woody Wetlands 
Emergent-Herbaceous Wetlands 
Shrubs 
Grasslands 
Inland Water Bodies 
Transitional 
Mixed Agriculture 
Residential and Urban 

Pre-settlement 1650 vegetation 

Remaining pre-settlement 1650 vegetation 
Regrowing forest, farm woodlots, villages, cities 
Highland agriculture limited by soils and climate 
Mixed agriculture in lowland areas 

Remnant veg./old-growth saw timber 
Regrowing saw timber and cordwood forests 
Semi-natural vegetation on non-farm lands 
Not restocking logged forestlabandoned farmland 
Highland agriculture limited by soils and climate 
Mixed agriculture in lowland areas 
Estimated non-farm residential and urban area 

Regeneratinglregrowing forests (mix of stages) 
Wetlands with forest or shrub cover 
Wetlands with non-woody/herbaceous cover 
Semi-natural shrub cover 
Semi-natural grass/herbaceous cover 
Excludes Great Lakes 
Disturbed land due to clearing, logging, etc. 
Row, grain, pasture, hay, and other crops 
Residential, urban, built-up, impervious surfaces 



Figure captions 

Figure 1. Major physiognomic variability and spatial heterogeneity in reconstructed land cover 

for 1650. Although most of the eastern United States was dominated by closed forests having 

average canopy heights greater than 10 m, shorter non-forest vegetation and low trees of less 

than 10 m canopy height dominated to the west and along much of the coast. Landscapes 

consisting of mosaics of tall forests mixed with patches of much shorter trees of the same life 

form (height mosaics) were regionally important. The southeastern coastal plain and prairie- 

forest transition zone were characterized by mosaics of grassland or wooded grassland and 

closed forest (type mosaics). 

Figure 2. Reconstructed 10-km land use intensity maps for 1850 expressed as fractional areas 

(%) within the eastern United States including (a) Old-Growth Vegetation, (b) Forest-Village 

Disturbance, (c) Lowland Agriculture, and (d) Highland Agriculture. High fractional area 

values near 80- 100% for old-growth vegetation imply minimal human disturbance, while the 

degree of human-induced land cover change corresponds to the sum of fractional area values in 

panels b-d. 

Figure 3. Reconstructed 10-km land use intensity maps for 1920 expressed as fractional areas 

(%) within the eastern United States including (a) Remnant Old-Growth, (b) Young Regrowing 

Forest , (c) Degraded Land, (d) Lowland Agriculture, (e) Highland Agriculture, and (f) 

Residential and Urban. Large fractional area values for agriculture, young regrowing forest, 

and degraded land illustrate the combined effects of intensive land use. 



1696 Figure 1 1. Patterns of aerodynamic surface roughness length (cm), as 10-km characteristic 

1697 values displayed using a logarithmic color scale. Maps for (a) 1650, (b) 1850, (c) 1920, and (d) 

1698 1992 time slices. Characteristic roughness lengths track changes and patterns of land use, 

1699 including settlement patterns in 1850 and the fragmented distribution of recovering forests of 

1700 1992. 
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